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1. Introduction

Evolution has equipped fish with locomo-
tion systems capable of high propulsive
efficiency, rapid acceleration, and maneu-
verability, making bioinspiration a produc-
tive route for motion design in water.[1–4]

Swimming in aquatic animals emerges
from the flexible body and flow interactions
that can even yield efficiency through
vortex exploitation by an integrated senso-
rimotor system responsive to body state
and external conditions.[5–10] The govern-
ing mechanics of aquatic locomotion are
high-dimensional and nonlinear, spanning
actuation, material properties, and hydro-
dynamics, and they inform motion models
and design methods that exploit morphol-
ogy and compliance. Bioinspired engineer-
ing seeks to translate these principles into
robotic platforms and materials, yet while
external features such as soft actuators,
compliant joints, and streamlined bodies
are readily reproduced, capturing the
adaptive sensorimotor dynamics remains
a major challenge.[11–13] This challenge is
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Swimming in fish arises from tightly integrated neural, muscular, skeletal, and
hydrodynamic processes that are difficult to capture in compact, transferable models
for robotics. An interpretable system identification (SySID) is presented that bidi-
rectionally maps between electromyography (EMG) and kinematics in freely swim-
ming koi and further tests its generalization to a robotic fish. Synchronized EMG and
kinematic are collected across laminar, Kármán vortex, and reverse Kármán vortex
flows spanning 0.146–0.274m s�1. A linear autoregressive with exogenous input
(ARX) model architecture is chosen to capture both feedforward (EMG to kinematics)
and feedback (kinematics to EMG) pathways, enabling the extraction of key system
parameters, such as natural frequency, damping ratio, and input–output delays.
Cross-individual validation demonstrates robust performance and identifies the best-
performing fish-trained model, which is then evaluated for cross-domain transfer by
replacing EMG input with processed pulse width modulation actuation signals from
a robotic fish. Despite differences in mechanics and actuation physics, predictions
closely match measured trajectories (mean R2= 0.86� 0.13), substantially outper-
forming a deep neural network (97.8% higher percentage fit index) trained on the
same biological datasets. These findings show that compact, interpretable SySID
models enable accurate bio-to-robot transfer without robot-specific retraining,
grounding robotic motion models directly in biological function rather than imitation.
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essentially to represent biological sensorimotor dynamics in a
compact, transferable form that supports robotic motion design.

Despite advances in mimicking external morphology, many
bioinspired robots’ central pattern generator (CPG) tuning still
relies on simplified schemes such as coupled oscillators, rule-
based logic, or artificial CPGs.[14–17] While effective for generat-
ing stable rhythmic outputs, these approaches rarely incorporate
real biological data and often overlook the complex sensorimotor
loops essential for adaptive locomotion. Even biologically
inspired CPGs, modeled on animal neural circuits for swimming
or walking, typically use mathematical oscillators such as coupled
Hopf or phase models rather than replicating actual neural or
anatomical structures.[18] Recent work with spiking neural net-
works and neuromorphic architectures modeled on the lamprey
spinal cord[19] shows promise, but remains limited in complexity
and largely decoupled from in vivo signals. Crucially, no robotic
platform has implemented a biologically derived, dynamics-
relevant model trained directly from electromyography (EMG)
of the target species and transferred to a robot without retraining.
This absence of biologically grounded, transferable models con-
strains both the behavioral realism of bioinspired robots and our
broader understanding of animal locomotion, underscoring the
need for alternative modeling frameworks rooted in actual bio-
logical function.

System identification (SySID) offers a data-driven alternative,
extracting dynamic input–output relationships directly from
empirical data without requiring detailed biophysical models.
SySID methods have already demonstrated substantial utility
across diverse biological domains. In human sensorimotor sys-
tems, EMG has been linked to kinematics using autoregressive
with exogenous input (ARX), nonlinear autoregressive (NARX),
and state-space frameworks,[20–22] which naturally incorporate
temporal dynamics and feedback loops in interpretable
forms. In neural applications, ARX and time-varying ARX have
powered electroencephalogram (EEG)-based brain–computer
interfaces,[22–24] while multiscale ARX has quantified cortical–
subthalamic information transfer in rodent models of
Parkinson’s disease.[25] Similar methods in conscious sheep have
characterized the closed-loop baroreflex and vascular system
under independent baroreceptor perturbations.[26] These exam-
ples demonstrate that SySID-based modeling schemes, particu-
larly ARX, can be applicable across species and physiological
systems, from neurophysiology to cardiovascular systems.
Similarly, NARX has revealed nonlinear causal interactions in
neural circuits,[27] and state-space models have captured spike-
train dynamics and transient oscillations in primate and human
recordings.[28,29] Frequency-domain SySID has shown adaptive
proprioceptive reweighting in human postural regulation.[28]

In aquatic locomotion research, fish EMG is a direct measure
of muscle activation patterns driving body curvature; when com-
bined with kinematics, it offers a complete input–output dataset
ideally suited for SySID modeling of swimming.

Among all the aforementioned approaches, we focus on the
ARX model for its qualities (such as ease of implementation,
low computational cost, and interpretability) that make it espe-
cially suitable for extracting biologically meaningful structure
from complex sensorimotor datasets. Compared to NARX,
high-order state-space models, or deep neural networks (DNNs),
ARX requires fewer parameters, reducing the risk of overfitting

with the limited datasets typical of free-swimming animal experi-
ments, while still enabling recovery of key dynamics-relevant
parameters such as natural frequency, damping ratio, and delay.

In addition to extracting meaningful structures from complex
biological datasets, there has been significant recent interest in
cross-domain modeling, where computational models trained on
biological data are directly transferred to robotic platforms.[30]

Early work by Nicolelis et al. demonstrated neural-to-robot inter-
faces in which cortical signals from primates were applied to
robotic limbs in real time.[31] More recent efforts have used
an EEG decoded by deep learning to achieve cross-subject gen-
eralization in a robotic exoskeleton.[32] At the same time, EMG
has been transferred to prosthetics and wearable robots in
human applications.[33] However, applications of these principles
from nonhuman species to robotic platforms remain rare, with
notable exceptions such as Montoya et al. who used human
EMG-derived signals for a robotic-fish motion modeling frame-
work, demonstrating cross-species, albeit not fully biologically
grounded, domain transfer.[34] These successes in other domains
underscore the missed opportunity in aquatic vertebrate robotics.
To our knowledge, no prior work has demonstrated direct cross-
domain transfer of empirically derived sensorimotor dynamics
from aquatic vertebrates to robotic fish. This gap persists due
to challenges in morphology mismatch, differences in actuation
mechanisms, environmental variability, biological signal noise,
and the data demands of complex models prone to overfitting.[32]

To address the aforementioned challenges, we present a bio-
logically grounded cross-domain modeling framework that
learns the sensorimotor dynamics of freely swimming koi fish.
We fit a low-order ARX model to differential EMG and tail dis-
placement (TD) collected across laminar, Kármán, and reverse-
Kármán flow regimes, yielding a compact representation that
estimates delay, steady-state gain, and related dynamic quanti-
ties. We assess zero-shot transfer by using processed pulse
width modulation (PWM) actuation as an exogenous input to
the EMG-trained ARX model and predicting robotic TD offline.
Our contributions are threefold: i) a direct biological-to-robotic
prediction approach using an interpretable SysID model trained
only on fish data; ii) a bidirectional EMG to kinematics mapping
that estimates delays and gains to clarify sensorimotor coupling;
and iii) evidence of cross-individual and cross-domain generali-
zation, benchmarked against a DNN in offline tests. Together,
these results provide a simple route from animal signals to trans-
ferable, interpretable motion models for bioinspired robots.

2. Results and Discussion

We recorded bilateral intramuscular EMG from the caudal mus-
culature of freely swimming koi and synchronized these signals
with video-derived TD across multiple flow regimes (laminar,
Kármán vortex street (KVS), reverse KVS (RKVS)) and swimming
speeds (Figure 1, Experimental Section). EMG was rectified and
smoothed to obtain envelopes, then combined as a left–right dif-
ferential and paired with TD to form input–output sequences
(Figure 2A–C, Experimental Section). We trained a low-order,
interpretable ARX model on these fish datasets to predict TD
from differential EMG (Figure 3A, Experimental Section),
selected a single fish-trained model that generalized across
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individuals, and diagnostics included representative traces and
residual checks (Figure 3B–G). We collected robotic-fish kine-
matics data (Figure 1A) to generate input-output pairs in laminar
and KVS flow regimes (Figure 2D–G) and then applied ARX
model to it, without retraining, to a robotic fish to predict robotic
TD from processed PWM actuation signals (Figure 3H,
Experimental Section). The ARXmodel revealed system behavior
(delay, steady-state gain, and related dynamics) and also real-fish
sensorimotor dynamics (Figure 4). The ARX model accurately
predicted robotic-fish tail motion across varying flow speeds
and actuation settings. At the same time, analysis of the real-
to-robot body-size ratio revealed that morphological similarity
further improved prediction accuracy (Figure 5). Performance
of ARX models was quantified with coefficient of determination
(R2), percentage fit index (PFI), Pearson’s R, root-mean-square
error (RMSE, cm), and normalized RMSE (% of max tail
amplitude) (Figure 6). For context, we also evaluated a trained
on the same DNN biological datasets (Figure 7) and analyzed
simple parameter readouts from the ARX model (delay,
steady-state gain, and related dynamics) for interpretability. All
analyses are offline; no real-time or closed-loop operation was
implemented.

2.1. Cross-Individual ARX Validation

To assess the reproducibility and generalizability of ARX models
trained on real-fish data, we implemented a cross-individual

validation framework (Figure 3A). Six separate ARXmodels were
trained using differential EMG envelope and TD data from six
real-fish datasets, each corresponding to distinct flow conditions
and speeds (see Table 1). The primary goal of this validation step
was twofold: i) to evaluate each model’s fidelity in reproducing
the dynamics of the dataset it was trained on (self-validation),
and ii) to test each model’s ability to generalize to unseen fish
by applying it to the remaining five datasets (cross-validation,
Figure 3B–E).

Model performance was quantified using the R2, which meas-
ures the proportion of variance in the measured output explained
by the predicted signal. In addition, RMSE and PFI were com-
puted in later sections to provide complementary assessments of
prediction accuracy. Representative examples of self- and cross-
validation results are presented in Figure 3B–D, where the ARX
model trained on Dataset 1 (Laminar, 0.184m s�1) shows strong
agreement in self-validation (R2= 0.831), and varying degrees of
generalization in cross-validation to Dataset 3 (R2= 0.755) and
Dataset 4 (R2= 0.813).

A complete summary of cross-validation performance across
all six datasets is visualized in Figure 3E, where each row corre-
sponds to a model trained on a specific dataset and each column
shows prediction R2 scores when tested on other datasets.
Several trends emerged. First, models trained under laminar
flow conditions at 0.184 or 0.274m s�1 tended to generalize
better to other laminar datasets compared to RKVS conditions.
Notably, the ARX model trained on Dataset 1 achieved

Figure 1. Experimental setup and flow conditions for real and robotic-fish trials. A) Real fish: bilateral EMG from caudal red muscle and TD from video.
B) Flow tunnel for real/robotic trials. C) Robotic fish with an open-loop CPG controller. D) Wireless EMG acquisition device. E–G) Flow regimes: laminar,
KVS, and RKVS. Only laminar flow was used for robotic trials.
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reasonably high R2 values across multiple target datasets, sug-
gesting that simpler flow regimes may promote better generali-
zation. In contrast, RKVS-trained models (e.g., ARX2 and ARX4)
showed limited generalization, often yielding low or negative R2

scores when applied to datasets collected under different vortex
conditions, indicating negative transfer.

Overall, this cross-validation matrix provides a rigorous means
of evaluating model robustness across individual variability and
flow environments. It highlights both the strengths and limita-
tions of linear SySIDmethods like ARX in capturing the diversity
of biologically generated locomotion signals.

2.2. Generalization Analysis via Residuals

While cross-validation using R2 values captures overall prediction
accuracy, it does not reveal detailed error structures or whether
predictive failures arise from systematic model bias or unmod-
eled dynamics. To address this, we performed a residual-based
generalization analysis using a representative ARXmodel trained

on Dataset 1 (ARX1). The goal was to assess whether prediction
errors (residuals) exhibited temporal correlation or input depen-
dence when applied to both self and unseen datasets.

For each test case, residuals et ¼ yt � ŷt were analyzed using
i) autocorrelation of the residuals and ii) cross-correlation
between the model input and residuals. These metrics help eval-
uate whether residuals approximate white noise (ideal case) or
contain structure suggestive of missing dynamics.

Figure 3F shows the residual analysis for the self-validation
case (Dataset 1!Dataset 1), where both autocorrelation and
cross-correlation plots indicate minimal temporal or input-linked
structure. This confirms that ARX1 captures the majority of sys-
tem behavior in its own training dataset, which was collected
under laminar flow. In contrast, when ARX1 was applied to
Dataset 4 (Figure 3G), which was recorded under a RKVS con-
dition, residuals exhibited temporal autocorrelation and stronger
input-residual cross-correlation. These structured errors likely
reflect flow-regime mismatch, as the ARX model trained in lam-
inar flow cannot fully account for unsteady external perturbations

Figure 2. A) Real-fish signal processing pipeline for generating input–output pairs for the ARX model. Raw EMG filtered, rectified, and smoothed to
extract envelopes. Left–right difference computed to form a single differential EMG signal. Normalized differential EMG used as ARX input and cor-
responding TD as model output. B) Examples of input–output pairs and flow conditions from real-fish experiments. C) Matrix of experimental conditions
representing the full set of collected datasets. D) Signal processing pipeline for generating input–output pairs from the robotic fish for ARX model
validation. Robotic fish actuated by three servos in a flexible body under open-loop CPG control. PWM signal from tail servo (S3) zero-mean corrected
and normalized. TD from video used as model output. E) Representative input–output pairs from the robotic fish and matrix of flow speeds, and CPG
parameters for robotic-fish experiments F) laminar flow (28 datasets) and G) KVS (14 datasets). The numbers in each colored tile indicate the datasets
collected for that condition.
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introduced by vortex shedding in RKVS. Together, these results
support the interpretation that generalization limitations of ARX
models may arise from both biological variability and changes in
environmental flow conditions.

2.3. Interpretation of System Behavior

To further characterize the sensorimotor system’s dynamic
behavior, we performed a pole-to-parameter transformation
using the second-order approximation of a reduced-order ARX
(2230) model. Although the primary modeling and residual anal-
ysis were conducted using the higher-order ARX (3330) model,
both configurations yielded comparable fit indices and cross-
individual generalization performance. Moreover, the pole-zero
structures observed across both models were consistent, support-
ing the validity of this approximation. The continuous-time trans-
fer function derived from ARX (2230) exhibited a natural
frequency of ωn ¼ 11.3rad=s, indicating the dominant oscillation
rate of the fish body in response to normalized unit EMG input.
The system exhibited a low damping ratio ζ ¼ 0.096, suggesting
that tail motion is underdamped and characterized by resonant,
oscillatory behavior—a hallmark of compliant axial structures in
undulatory swimmers. Based on these parameters, the settling
time of the system was estimated as T s�3.66 s, capturing the
time required for the tail to stabilize after a perturbation.

Additionally, the input–output delay Td was extracted from the
exponential term in the continuous-time transfer function
derived from the fitted ARX model. In the Laplace domain, a
pure time delay of Td seconds is represented as a multiplicative
factor e�sTd applied to the system’s transfer function GðsÞ.[35] In
our case, the identified transfer function included a delay term
e�0.029s, indicating a time delay of Td ¼ 29ms. This formulation
aligns with standard system modeling principles, in which the
Laplace variable s has units of inverse time and the exponent
remains dimensionless. The presence of this delay captures
the combined effects of neural transmission latency and the

Figure 3. Workflow of ARX model training and validation. A) Six models trained on differential EMG–TD datasets from real fish and evaluated across all
datasets to assess cross-individual generalization. B–D) Measured (gray) versus predicted (red dashed) TD for self- and cross-validation cases. E) R2

cross-validation matrix. F,G) Residual autocorrelation and input–residual cross-correlation for (F) self and (G) cross cases. H) Cross-domain validation:
ARX trained on biological data employed to predict robotic-fish TD from processed servo signals.

Figure 4. Delays and gains of ARX models mapping between EMG and tail
kinematics across different flow regimes. A) Input–output delay (ms) and
B) steady-state gain were extracted from ARX (3,3,nk) models trained in the
feedforward (EMG ! Kinematics, blue) and feedback (Kinematics !
EMG, red) directions. The optimal input delay nk was selected for each
model by sweeping nk from 0 to 300ms and choosing the value that maxi-
mized the PFI. Each bar represents the mean across multiple trials of fish
(N= 3) tested under five distinct hydrodynamic conditions (laminar, KVS:
5, 7, 9 cm, and RKVS) at four swimming speeds (0.146, 0.184, 0.235, and
0.274m s�1).

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2025, e202501117 e202501117 (5 of 14) © 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aisy.202501117, W

iley O
nline L

ibrary on [03/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


muscle electromechanical response, enabling a biologically
meaningful characterization of the sensorimotor pathway.[36–38]

These parameters together support a dynamic characterization of
the fish’s body as a low-damped, resonant actuator with fast
response properties and moderate compliance. Such features

are advantageous for efficient thrust generation and energy trans-
fer during continuous swimming.

Moreover, these dynamics provide a valuable reference for
assessing interindividual variability and for benchmarking the
design of biomimetic robotic counterparts. The second-order

Figure 5. A) Summary of ARX prediction performance across the three real-to-robot standard-length ratio groups: G1 (�1.04), G2 (�0.8), and G3 (�0.6).
Bars show mean values of key metrics—R2, PFI, Pearson’s R, RMSE (cm), and normalized RMSE (%). Representative ARX model predictions for robotic-
fish TD. B–E) Comparison of measured (gray) and ARX-predicted (red dashed) TD under different flow speeds and CPG control settings in laminar flow.
F,G) Corresponding comparisons under KVS flow. Examples illustrate both high-accuracy cases and one lower-accuracy case at high actuation amplitude
for laminar and KVS flow conditions.

Figure 6. Validation metrics for robotic-fish datasets used to evaluate ARX model predictions. A) Experimental conditions for robotic-fish datasets (laminar:
row 1 to 4 and KVS: row 5 to 6) used in ARX model validation. Each cell lists the CPG control parameters (frequency f and amplitude A) and the flow speed
(m s�1). B) R2 between predicted and measured TD. C) PFI (%), indicating relative prediction accuracy. D) Pearson correlation coefficient R, reflecting the
linear similarity between predicted and measured TD signals. RMSE of ARX model predictions across robotic-fish datasets, evaluated in two complementary
forms. E) RMSE values in centimeters quantify the absolute prediction error in TD. F) RMSE is expressed as a percentage of the maximum TD amplitude for
each dataset, providing a normalized view of model performance and facilitating interpretation across variable motion scales.
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dynamics identified from our fish locomotion model, with a nat-
ural frequency ωn ¼ 11.3rad=s and a damping ratio ζ ¼ 0.096,
suggesting that the fish body behaves as a lightly damped resonant
system. This implies that the fish’s tail reaches peak displacement
approximately every T ¼ 2π=ωn � 0.556s, setting a benchmark
for tail-beat timing in robotic design. The corresponding settling
time T s ¼ 4=ζωn � 3.66s defines the system’s full-body stabiliza-
tion window, which must be accounted for when designing feed-
back or adaptation in robotic motion. The gain of the system
(�25–30 from our transfer function) indicates that small-
amplitude EMG signals result in relatively large mechanical
responses, guiding actuator selection toward high-displacement
response per unit input voltage or PWM duty cycle. Most critically,
the identified input–output delay Td ¼ 29ms sets a lower bound
for real-time control loop latency in the robotic platform. This
necessitates low-latency motor drivers and real-time processing
(e.g., update rates above �35Hz) to match the biological system’s
responsiveness. Together, these parameters allow the robotic fish

to be tuned not just for kinematic resemblance, but also for
dynamic equivalence, ensuring that the body oscillations, timing,
and energy efficiency mirror those of the biological template.

2.4. Interpretability of ARX Model Parameters Reveals
Sensorimotor System Dynamics

Beyond system behavior, ARX models offer mechanistic insights
into the biological system through interpretable parameters such
as input–output delay and steady-state gain. Figure 4 illustrates
these parameters extracted from ARX (3, 3, nk) models fitted in
two directions: feedforward (EMG! kinematics) and feedback
(kinematics! EMG), across hydrodynamic flow speeds and
regimes. Figure 4A shows that feedforward models exhibited
consistently longer delays (85–110ms) than feedback models
(45–80ms), consistent with expectations of longer neuromuscu-
lar processing latencies relative to sensory feedback loops.
Figure 4B highlights that the steady-state gain—indicative of
how much motion is produced per unit of EMG input—was
markedly higher in the EMG! kinematics pathway, suggesting
a strong forward drive from muscle activation to body displace-
ment. This asymmetry between the two pathways reflects canon-
ical features of biological motor control: slower, high-gain
forward transformation (muscle-driven motion) and faster,
low-gain feedback transformation (sensory responsiveness).
Such physiologically meaningful distinctions cannot be directly
inferred from the latent weights of DNNs, which, while powerful
for prediction at high computation cost and extensive data, lack
transparency in revealing underlying system properties. The abil-
ity of ARX models to capture and quantify such delays and gains
underscores their utility not only as predictive tools but also as

Figure 7. Cross-domain validation of a DNN trained on G2 fish EMG and kinematics, and tested on laminar flow datasets of robotic-fish motor signals to
predict TD. A) Schematic of the DNN architecture. B) Comparison of mean R2 across optimized deep-learning architectures, including DNNs with Linear,
tanh, and ReLU activation functions, and an LSTM network, benchmarked against the ARX(3,3,0) model. C,D) Comparisons of measured (gray) and the
optimized DNN (linear) predicted (red) TD for two representative robotic-fish datasets with the (C) lowest and (D) highest prediction accuracy. E–H)
Performance of the optimized DNN across robotic-fish laminar flow condition (28 datasets): (E) R2, (F) PFI, (G) RMSE, and (H) normalized RMSE (%).

Table 1. Datasets (G2) used for ARX model training and cross-individual
validation, showing flow regime and flow speed for each dataset.

Dataset Flow regime Flow speed [m s�1]

1 Laminar 0.184

2 RKVS 0.274

3 Laminar 0.274

4 RKVS 0.274

5 Laminar 0.274

6 Laminar 0.184
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computational probes into the sensorimotor architecture of
swimming fish.

2.5. Cross-Domain Generalization from Biological to Robotic

2.5.1. Influence of Real-to-Robot Size Ratio on Transfer
Performance

To examine how morphological scaling between real and robotic
fish affects cross-domain model performance, the experimental
subjects were grouped according to their real-to-robot standard-
length ratio. Three representative groups were defined: G1
(�1.04), corresponding to fish closely matched to the robotic fish
size; G2 (�0.8), representing moderately smaller fish; and G3
(�0.6), representing the smallest relative individuals (Table 4).
From each group, multiple datasets were selected, and indepen-
dent ARX models were trained using the corresponding
EMG–kinematics pairs (Figure S4, Supporting Information).

The best-performing ARX model from each group was then
evaluated on 42 robotic-fish datasets (Figure 6A) to quantify the
effect of size ratio on cross-domain predictive accuracy. Figure 5A
summarizes the results across five complementary metrics: R2,
PFI (%), Pearson’s R, RMSE (cm), and normalized RMSE (%).

Performance analysis revealed a clear dependence of transfer
accuracy on body-size similarity between biological and robotic
systems. Groups G1 and G2, whose size ratios were closer to
unity, achieved substantially higher prediction accuracy and
lower error compared to G3, indicating that geometric and hydro-
dynamic similarity facilitates more faithful transfer of actuation–
response dynamics. Among these, G2 exhibited the overall best
performance, with the highest mean R2 and PFI values and the
lowest RMSE. The ARX model trained on G2 data was therefore
selected as the representative biotrainedmodel for all subsequent
cross-domain validation experiments.

These findings highlight that while the proposed ARX frame-
work generalizes across morphological variations, maintaining a
comparable real-to-robot body ratio strengthens the fidelity of
dynamic correspondence and improves prediction robustness.

2.5.2. Model’s Prediction Performance for Cross-Domain Prediction

Representative ARX model predictions for robotic-fish TD across
different flow regimes, speeds, and actuation parameters are pre-
sented in Figure 5B–G. The ARX model, which was exclusively
trained on G2 fish EMG and corresponding kinematic data, was
then validated by processed PWM as input, demonstrating
robust performance in predicting robotic-fish TD, despite signif-
icant differences in system mechanics and actuation modalities.

Predictions shown in Figure 5C–G illustrate excellent agree-
ment between predicted and measured TD, with coefficient of
determination (R2) values consistently exceeding 0.8 in laminar
(Figure 5C–E) and KVS (Figure 5F,G) flow conditions. This indi-
cates the ARX model effectively captured fundamental underlying
dynamics transferable from biological locomotion to a bioinspired
robotic system. However, Figure 5B illustrates a less accurate pre-
diction (R2= 0.431) in the laminar flow regime, highlighting con-
ditions under which the model exhibited reduced performance.
This discrepancy was observed under high actuation amplitude

conditions, suggesting potential nonlinearities or unmodeled
dynamics in the robotic fish’s response at these settings (Figure S6,
Supporting Information). This drop-in accuracy may reflect either
input–output mismatch (e.g., due to atypical CPG amplitude/
frequency combinations) or dynamic features specific to the robotic
platform (such as inertial lag or nonlinear actuator–fluid coupling)
that were not captured by the linear model trained on biological
data (Figure S5, Supporting Information).

Comparatively, previous studies employing CPG-driven robotic
platforms to mimic fish or salamander locomotion typically focus
on replicating general locomotion patterns rather than precisely
predicting trajectories from biological data.[39] In contrast, our
work provides explicit evidence that linear parametric models
trained using real biological signals can accurately predict detailed
kinematic outputs in robotic counterparts. The success of the ARX
in this domain-shift stems from its parametric structure: it models
the essential temporal and amplitude relationships between actu-
ation and movement, rather than relying on complex, data-hungry
patterns. Because these relationships (e.g., delay between actu-
ation and motion, proportional gain, and oscillatory frequency)
are shared by both fish and robots, the ARX can operate effectively
in both worlds. This makes it more robust than high-capacity
black-box models when facing the large gap between biological
and robotic systems. These examples underscore the model’s abil-
ity to generalize across domains while highlighting the need for
further refinement or nonlinear modeling approaches in certain
edge cases. A complete quantitative assessment across all robotic
conditions is provided in Figure 6B–F.

To systematically evaluate prediction accuracy across all
robotic datasets, several quantitative metrics were computed:
the coefficient of determination (R2), PFI, Pearson correlation
coefficient (R), and RMSE. These metrics capture prediction
accuracy from both absolute and normalized perspectives.

As detailed in Figure 6B–F, the ARX model exhibited high
average predictive accuracy across 42 distinct robotic datasets
(Figure 6A), yielding a mean R2 of 0.86� 0.13, PFI of 65.25%�
13.52, and Pearson’s R of 0.98� 0.008. The corresponding RMSE,
shown in Figure 6E,F, averaged 0.95� 0.32 cm, which corre-
sponds to roughly 10.44%� 4.13% of maximum TD amplitude,
indicating consistently low prediction errors.

These results illustrate that the linear ARXmodel’s performance
remains stable despite significant variations in robotic operating
conditions, highlighting the strength of parametric linear models
for generalization to related but distinct mechanical systems. Prior
works using similar approaches have typically emphasized
domain-specific predictions or required extensive parameter tun-
ing, and have rarely demonstrated robust generalization between
biological and mechanical systems.[32] Thus, our study fills a nota-
ble gap by demonstrating robust predictive generalization from real
biological measurements to robotic-fish dynamics.

2.6. Comparison of ARX and DNN Model Generalization to
Robotic Fish

2.6.1. DNN Performance on Robotic Datasets

To benchmark against the linear ARXmodel, we implemented two
machine learning (ML) models—a fully connected feedforward
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DNN and long short-term memory (LSTM)—for predicting TD
from EMG-derived inputs.[40] We trained the ML models using
six G2 fish datasets (Table 1). To ensure a fair and optimized
comparison with the ARX model, the feedforward DNN was
retrained under multiple configurations with systematic optimi-
zation of activation functions, regularization, and training call-
backs. The DNN architecture consisted of sequential layers
with [1, 128, 64, 32, 16, dropout (0.2), 1] neurons (Figure 7A).
Three activation settings were evaluated: i) linear activations
in all layers, ii) tanh activations in hidden layers with a linear
output, and iii) ReLU activations in hidden layers with a linear
output. We used a linear activation function at the output layer
for all networks because the data were not normalized, and the
TD values were retained in their original physical scale and units.
The network was trained using the Adam optimizer (learning
rate 1� 10�4), mean squared error loss, and RMSE as the train-
ing metric. Early stopping (patience= 3) and adaptive learning-
rate scheduling (ReduceLROnPlateau, factor= 0.5, patience= 5,
minimum learning rate= 1� 10�6) were applied to prevent
overfitting and stabilize convergence. Training was performed
for up to 1000 epochs, with a batch size of 300 and a 30% vali-
dation split.

Similarly, the LSTM network was implemented to represent
a state-of-the-art nonlinear time-series baseline. For this model,
the input–output data were converted to a sequential form
using a sliding-window method. A window length of 4 was
used, producing overlapping sequences that transformed the
original input matrix of size (n, m) into a 3d array (n – 4þ 1,
4, m), where each window captured four consecutive time steps
of the input variables aligned with their corresponding output
values. The LSTM architecture comprised stacked layers
[64, 64, 64, 32, 16] with a 20% dropout and a linear output
layer, trained under the same optimization settings and callbacks
as the DNN.

Model performance was quantified using the coefficient of
determination (R2) on the cross-domain (bio-to-robot) test set.
Figure 7B shows the resulting mean R2 values were 55.16%
(DNN-linear), 44.15% (DNN-tanh), 43.39% (DNN-ReLU), and
40.42% (LSTM). We selected the optimized DNN with a linear
activation function among all the ML models due to its relatively
better predictive performance.

Representative robotic-fish trials illustrate the variability in
DNN performance (Figure 7C,D). In one case (flow speed=
0.258m s�1, f= 2, A= 400), the model achieved R2= 0.652,
indicating moderate accuracy (Figure 7C). In contrast, under dif-
ferent conditions (0.184m s�1, f= 2, A= 300), performance
dropped sharply to R2= 0.355 (Figure 7C). Across all robotic
datasets, the DNN achieved a mean R2 of 0.55� 0.096, RMSE
of 1.987� 0.368 cm, PFI of 32.74� 6.95%, and normalized
RMSE of 20.50� 2.63%; their distributions are shown in
Figure 7E–H.

The DNN exhibited lower predictive accuracy and higher aver-
age error than the ARX model, despite being trained on more
biologically relevant datasets. This finding aligns with previous
literature showing that deep models, although powerful in repre-
sentation capacity, are often more sensitive to domain shifts and
less robust to limited training diversity without additional adap-
tation techniques.[32]

2.6.2. Quantitative Comparison with ARX Model

Table 2 summarizes the performance of ARX and DNN models,
both trained on real-fish datasets and validated on robotic-
fish data (laminar flow condition). Across all metrics, the ARX
model consistently outperformed the DNN: 1) Coefficient of
determination (R2): 0.85� 0.15 versus 0.55� 0.096 (þ56.5%
improvement); 2) PFI: 64.73� 16.22% versus 32.74� 6.95%
(þ97.8% improvement); 3) Pearson’s R: 0.98� 0.008 versus
0.90� 0.053 (þ8.9% improvement); 4) RMSE: 1.08� 0.372 cm
versus 1.987� 0.368 cm (54.35% error reduction); and 5) normal-
ized RMSE: 10.73� 5.02% versus 20.50� 2.63% (47.6% error
reduction).

These results demonstrate that, for cross-domain prediction
from limited biologically derived datasets, the ARX model deliv-
ers substantially higher predictive accuracy and lower error than
the DNN. The parametric structure and modest data require-
ments of ARX models facilitate robust generalization across bio-
logical and robotic domains. While prior work has often favored
deep learning for bioinspired robotics due to its representational
flexibility,[32] our findings show that simpler, interpretable mod-
els can achieve superior performance under realistic bio-to-robot
transfer scenarios. In the context of cross-domain transfer, this is
particularly important: a model that works well without retrain-
ing enables us to leverage insights from real animal data and
deploy them directly in bioinspired robots, even when their
mechanics differ substantially. This removes the need for costly
robot-specific data collection and opens the door to building
robotic systems grounded in actual biological function rather
than mere imitation. Beyond accuracy, ARX models provide
physiologically meaningful parameters, such as delays and gains,
giving us direct insight into the underlying sensorimotor archi-
tecture of real fish; such capabilities are inherently lacking in
black-box models like DNNs.

2.6.3. ARX Versus Deep Models: Complexity and Computational
Trade-Offs

Beyond predictive accuracy, the ARX and DNN frameworks dif-
fer substantially in their computation, data requirements, deploy-
ment, and interpretability (Table 3). The ARX (3,3,30) model
comprises only six coefficients plus a bias term, can be fitted
in closed form on a CPU within milliseconds, and operates
with microsecond-level latency per prediction step—making it

Table 2. Quantitative comparison of ARX and DNN performance on
robotic-fish validation datasets. Metrics are reported as mean � SD
across 28 datasets. The last column shows the relative performance of
ARX versus DNN.

Validation metrics ARX
(Mean� Std)

DNN
(Mean� Std)

Relative performance
(ARX/DNN)

R2 0.85� 0.15 0.543� 0.096 þ56.5%

PFI (%) 64.73� 16.22 32.74� 6.95 þ97.8%

Pearson’s R 0.98� 0.008 0.9� 0.053 þ8.9%

RMSE [cm] 1.08� 0.37 1.987� 0.368 �54.35% (error reduction)

Normalized RMSE 10.73� 5.02 20.50� 2.63 �47.6% (error reduction)
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well-suited for real-time or embedded applications. In contrast,
the DNN used here contains 11 137 trainable parameters,
requires GPU-accelerated training with hyperparameter tuning,
and performs approximately O (104) multiply–accumulate oper-
ations per time step during inference.

The ARX model is data-efficient, transferring from fish to
robot in a zero-shot manner without retraining, whereas the
DNN exhibited greater sensitivity to domain shift between bio-
logical and robotic systems. Moreover, ARX models are inher-
ently interpretable: key parameters such as delay, steady-state
gain, and damping ratio can be directly extracted, providing
mechanistic insight into the underlying sensorimotor system.

DNNs and LSTMs, by contrast, offer greater nonlinear repre-
sentational capacity and can capture richer temporal dependen-
cies when large, diverse datasets are available. However, they
trade off interpretability and computational simplicity for com-
plexity and hardware demands.

Overall, for cross-domain prediction tasks involving limited
biological data, the compact ARX model achieves higher effi-
ciency and interpretability at a fraction of the computational cost,
while maintaining robust accuracy. Deep learning architectures
remain advantageous primarily when strong nonlinearities dom-
inate and extensive domain-specific data are accessible.

3. Conclusion

This study presented a biologically grounded cross-domain
modeling framework that captures the sensorimotor dynamics
of freely swimming koi fish and evaluates their offline transfer-
ability to a robotic fish without retraining. Our primary objectives
were to 1) develop an interpretable SySID-based plant model
capable of generalizing beyond its training conditions, 2) quantify
bidirectional EMG↔ kinematics relationships to extract
dynamics-relevant parameters, and 3) assess robustness to vari-
ability in individual fish, morphology, and operating environ-
ment. Objective 1 was achieved by training an ARX model on
real-fish datasets collected across four hydrodynamic regimes
and multiple swimming speeds (0.146–0.274m s�1), followed
by offline testing in which the selected fish-trained ARX model
received processed PWM actuation signals from a robotic fish
and predicted its TD. Objective 2 was met by extracting param-
eters such as natural frequency, damping ratio, input–output
delay, and steady-state gain, revealing pathway-specific differen-
ces consistent with biological motor control principles. Objective
3 was ticked off by cross-individual and cross-domain evalua-
tions, where the ARX model outperformed the DNN baseline
with a 56.5% higher R2, 97.8% higher PFI, and up to 54.35%
lower RMSE in robotic-fish predictions, demonstrating resilience
to biological and mechanical differences. These results demon-
strate that interpretable, low-fidelity SySID models can capture
biologically meaningful motion dynamics and apply them effec-
tively across domains in an offline predictive setting, even under
significant physical and environmental differences. Beyond
robotics, the extracted parameters provide new physiological
insight into fish sensorimotor loops and offer a practical basis
for tuning bioinspired controllers. Future work will address

Table 3. Practical comparison of ARX, DNN, and LSTM (this study).

Aspects ARX(3,3,30) DNN (Linear) LSTM

Parameters 6 (þbias) 11137 98513

Model memory (float32) �28–32 bytes �44 kB 384

Saved model size 7 KB 290 kb 4.5 MB

Training hardware CPU GPU recommended GPU recommended

Typical train time (fish data) ms minutes (with tuning) minutes (with tuning)

Inference per time step �10 ops �2.4� 104 ops �3.8� 105 ops

Time per inference step μs 1 ms 6ms

Data needs Low High High

Zero-shot fish to robot Yes weak (domain-shift sensitive) weak (domain-shift sensitive)

Interpretability High (delays/gains/damping) Low Low

Ability to capture nonlinearity Limited (linear only) Strong (via nonlinear activations) Very strong (temporalþ nonlinear)

Table 4. Subject information for freely swimming real-fish experiments,
showing weight and standard length of each fish.

Fish group
(Ratio)

Subject Weight
[kg]

Standard length
[cm]

Mean standard length
[cm]

G1 (�1.042) 1 0.915 32 34.4� 1.51

2 0.960 34

3 1.160 35

4 1.160 35

5 1.070 36

G2 (�0.8) 1 0.50 26 26.5� 0.9

2 0.46 25.5

3 0.53 27.5

4 0.56 27

G3 (�0.6) 1 0.25 20 19.62� 1.8

2 0.2 17

3 0.25 20.5

4 0.28 21
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the observed performance drop under high-amplitude actua-
tion, potentially through nonlinear or hybrid ARX–nonlinear
approaches or polynomial state-space formulations. Additional
directions include extending the framework to multi-degree of
freedom morphologies, integrating closed-loop sensory feedback
for adaptive control in unsteady flows, and validating across
diverse species and robotic platforms.

4. Experimental Section

Animal Care and Housing: All experimental procedures and animal han-
dling were approved by the Institutional Animal Care and Use Committee
of Peking University (Certificate No. TY2018466).

Carp fish (Cyprinus rubrofuscus and Cyprinus carpio) were obtained from
a local fish market for experimental use (see Table 4). The fish were cate-
gorized into three groups based on the ratio of real-fish to robotic-fish
standard length, calculated as the mean standard length of each real-fish
group divided by the standard length of the robotic fish. The animals were
housed in a well-maintained 2 � 4 � 0.3 m3 tank with a total volume of
2400 liters. Water quality was maintained by replacing one-third of the vol-
ume weekly with fresh, dechlorinated water and through continuous filtra-
tion at a rate of 6000 L h�1. Water temperature was kept at 20� 2 °C.

Fish were fed three times daily using an automated feeding system.
Following the completion of all experimental procedures, the fish were
returned to a communal lake environment to reintegrate with other
conspecifics.

EMG Electrode Implantation and Recording System: Fish were first
anesthetized using a 160mg L�1 solution of tricaine methanesulfonate
(MS-222), continuously circulated through the mouth and gills to maintain
anesthesia during electrode placement. While under anesthesia, the fish’s
weight and standard length were measured, and electrode implantation
sites were marked near the base of the caudal fin (caudal peduncle) on
both sides of the body.

Differential EMG signals were recorded bilaterally by implanting elec-
trodes in the red muscle using fine (0.1 mm diameter), insulated copper
wires with 10mm of insulation stripped from both ends. Each wire was
inserted through a 28-gauge hypodermic needle and bent into a hook
shape to remain embedded in the muscle after needle withdrawal.
Electrodes were placed symmetrically on the left and right sides near
the caudal peduncle, while a reference electrode was positioned near
the left gill, away from the differential pairs.

The recording system (Figure 1D) comprised a wireless 16-channel dif-
ferential biosignal acquisition device (FreeBCI-BT-16, Nanjing Chengpu
Electronic Technology Co., Ltd.), which integrates signal amplification,
analog-to-digital conversion, and on-board microSD storage. The device
supported remote operation and enabled untethered, high-fidelity EMG
recordings during free-swimming trials.

To improve signal stability and reduce drag-induced dislodgement,
electrodes were sutured to a dorsal fin ray and glued together, leaving just
enough slack to accommodate full-body undulations without detachment.
This design minimized motion artifacts, reduced water resistance, and
eliminated tangling. The protocol was refined through trial and error,
allowing us to reduce experimental preparation times from several months
to a few weeks.

Following electrode placement, fish were transferred to the water tread-
mill (Loligo; Figure 1B) for recovery in home tank water. After 30min of
recovery, EMG recordings were initiated during steady swimming across
four flow speeds: 0.146, 0.184, 0.235, and 0.274m s�1. Concurrently, a
high-speed camera (Sony RX100m5) mounted above the tunnel captured
top-view videos at 100 fps to extract body midline and TD data (Figure 1A,
see Figure S1, Supporting Information).

Experimental Protocols and Flow Conditions: Experiments were con-
ducted under three distinct flow regimes: laminar flow, KVS, and RKVS,
as illustrated in Figure 1E–G. (for details Movie S1, Supporting
Information) Kármán vortices were generated using D-section cylinders
(5, 7, 9 cm), following established vortex generation protocols.[41]

Reverse Kármán vortices were created by actuating a 3D-printed
caudal fin at 1.5 Hz. The fin was fabricated using Future TPU material
(https://www.wenext.cn/static/material/78), which conforms to ISO
10993-10 and ISO 10993-5 standards for skin sensitivity and cytotoxicity.

All experiments were performed at four flow speeds: 0.146, 0.184,
0.235, and 0.274m s�1. We measured water velocity at the center of
the test section using a turbine-type flow probe (LS300A) in the
absence of the fish. To ensure consistency with the fish’s natural
environment, each subject was tested in the water treadmill filled with
water from its home tank. Fish were first acclimated in laminar flow at
0.124m s�1 for 30min. After acclimation, the flow speed was increased
to the designated value, and the fish swam under laminar flow for
1min before EMG and kinematic data were recorded for an additional
1–2min (Figure 1E).

Following the laminar trials, the flow speed was reduced to
0.124m s�1, and a D-section cylinder was introduced into the tunnel to
generate Kármán vortices (Figure 1F). Fish were given 5min to adapt
to the vortex environment before data collection resumed under turbulent
flow conditions at the specified speeds. EMG and kinematic data were
again recorded for 1–2min per condition.

This procedure was repeated using the RKVS configuration (Figure 1G),
in which vortex patterns were induced via the flapping 3D-printed fin.
Collectively, these trials yielded a diverse dataset encompassing fish sen-
sorimotor responses and tail kinematics across a range of flow speeds and
vortex environments. This dataset forms the basis for understanding how
swimming muscle activation and body motion adapt to changes in hydro-
dynamic conditions.

Signal Processing and Pose Extraction: EMG Preprocessing Pipeline: Raw
EMG signals recorded (1 kHz) by the biosignal acquisition system often
contained noise from transmission lines and motion artifacts. To address
this, we developed a custom MATLAB script for offline signal processing,
and the processing pipeline is shown in Figure 2A. Each channel
underwent the following preprocessing steps: Detrending to remove linear
drift, high-pass Butterworth filtering at 20 Hz to eliminate low-frequency
motion artifacts, low-pass Butterworth filtering at 450Hz to remove
high-frequency noise, and Notch filtering at 50 Hz to suppress power line
interference.

After filtering, signals were rectified (full-wave) to extract amplitude
envelopes, followed by double-pass smoothing with a 50-sample moving-
average filter. To generate a single input signal for single-input-single-
output (SISO) ARX, the right EMG envelope was subtracted from the left,
resulting in a differential EMG envelope. This signal was then normalized
and used as the ARX model input, while the corresponding TD served as
the model output.

Signal Processing and Pose Extraction: Video-Based Kinematic Extraction
and Head-Frame Transformation (Real and Robotic Fish): We used
DeepLabCut (DLC)[42] to extract midline poses from 100 fps video record-
ings of both real and robotic fish (Figure 1A–C). The DLC training dataset
included 69 videos spanning various subjects and swimming speeds.
In total, 1610 video frames were manually labeled with evenly spaced mid-
line points from the eyes to the base of the caudal fin. The model was
trained for 1� 105 iterations using the Resnet-152 backbone under
DLC’s default settings.

A separate DLC model was trained for robotic fish, initialized from a
ResNet-152 backbone and fine-tuned on manually annotated frames rep-
resentative of their respective body shapes, colors, and backgrounds. For
the robotic fish, equivalent points were selected to match the geometric
configuration of its modular tail segments.

After inference, poses with likelihood scores above 0.9 were retained
and visually verified by overlaying on the original video frames (Movie
S1, Supporting Information). While the x-axis coordinates were stable,
y-axis jitter was corrected using shape-preserving piecewise cubic interpo-
lation (makima), which improved midline continuity.

To express body kinematics in a head-fixed coordinate system (essen-
tial for comparing real and robotic-fish data), we converted global DLC
pose coordinates into joint angles and then reconstructed the pose using
four body segments of equal length. The transformation was applied using
the following homogeneous transformation matrix
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i�1Ft,i ¼
cosαt,i�1 � sin αt,i�1 0 Pt,x,k,i
sin αt,i�1 cosαt,i�1 0 Pt,y,k,i

0 0 1 0
0 0 0 1

2
664

3
775 (1)

Here, Pt,x,k,i ¼ pt,x,k,i�1 � dt,x,i and Pt,y,k,i ¼ pt,x,k,i�1 � dt,y,i are the trans-
formed midline points at time t and segment i. Angles αt,i�1 represent the
orientation between segment i� 1 and segment i. The terms dt,x,i and dt,y,i
denote the x and y components of displacement between adjacent midline
points pi�1 and pi, respectively. These displacement vectors are used to
transform each midline point pk from the global coordinate frame into
the head-attached coordinate frame (defined by i ¼ 1), enabling consistent
analysis of TD as shown in Figure 1A,C, Figure 2A,B, and Figure 2D,E.

Signal Processing and Pose Extraction: Generation of Synchronized
Input–Output Pairs: Final input–output pairs consisted of synchronized
differential EMG envelopes and head-relative TD trajectories.
Synchronization was achieved using an light emitting diode (LED) pulse
visible in both EMG and video recordings. Representative pairs are shown
in Figure 2B for two trials at 0.274m s�1, demonstrating signal fidelity and
interindividual variability. Figure 2C summarizes the complete dataset
spanning various flow speeds and regimes.

Robotic-Fish Dataset Generation for Testing the Biosignal–Driven System
Model: We used a custom-built, purposely modified robotic fish actuated
by three serially connected servo motors (S1–S3) embedded within a flex-
ible 3D-printed body (Figure 2D). The standard length of the robotic fish
from nostril to caudal peduncle is 33 cm. The control unit—comprising a
Raspberry Pi Zero W and a PWM Servo Driver HAT—executed an open-
loop CPG to produce sine wave signals with constant phase lag between
segments. The CPG parameters (frequency f, amplitude A) were selected
based on the flow speed measured prior to each experiment. The system
was powered by a rechargeable lithium battery connected via a switch,
allowing easy start-stop control. Additional wiring enabled servo actuation,
LED triggering for video synchronization, and recharging without
disassembly.

Robotic-fish experiments were performed under laminar (Figure 2F)
and KVS (5 cm cylinder) (Figure 2G) flow conditions. To calibrate actu-
ation parameters for each flow speed, we used a turbine-type flow probe
(LS300A) to measure the background flow. Actuation settings were tuned
such that the fish could hold position without drifting, and then trials were
recorded for 30 s per condition. A head-mounted LED provided a visual
marker synchronized with motor actuation (Figure 2D).

Although all three servos were actuated, only the PWM control signal to
the third servo (S3), located at the tail end, was used as the model input.
This signal most closely represents the wave peak and hence is analogous
to the caudal EMG activity observed in real fish. The raw PWM signal, typi-
cally oscillating around 1500 μs, was zero-mean corrected and normalized
by dividing by 550 to scale it to the range [–1, 1]. This value was determined
through a sensitivity analysis (Note S1 and Figure S3, Supporting
Information), which showed that normalization factors between 550–700
provided optimal amplitude alignment between ARX-predicted and
measured TD. Because the ARX model is linear in input, this calibration
influences only amplitude (R2/RMSE) without affecting timing or shape.
The same normalization factor (550) was consistently applied across all
real-fish size groups and robotic datasets. This preprocessing was inten-
tionally designed to parallel the EMG preprocessing pipeline used for the
real-fish data. We allowed the trained ARX model to treat PWM inputs
as EMG envelopes by aligning the input signal characteristics, thereby
preserving the learned mapping from actuation signal to TD. This equiva-
lence in data format was critical for enabling direct bio-to-robot transfer.
The corresponding TD measured from the video served as the model out-
put (Figure 2).

Robotic-Fish Dataset Generation for Testing the Biosignal–Driven System
Model: Generation of Synchronized Input–Output Pairs: Final input–output
pairs consisted of the processed PWM input signal (from servo S3) and
the corresponding TD in the head-attached frame. These were temporally
aligned using the LED pulse visible in the video stream. Representative
examples are shown in Figure 2E, highlighting trials conducted at

0.184m s�1 ( f= 2, A= 300) and 0.274m s�1 ( f = 2.3, A= 400). These
signals were not used for model training but were reserved exclusively
for validating the generalization performance of ARX models trained on
real-fish EMG. The complete robotic dataset covered laminar and KVS flow
regimes with 42 unique input–output conditions across flow speeds and
multiple actuation settings. The number of trials for laminar and KVS flow
regimes are shown in Figure 2F,G, respectively.

To ensure a comprehensive evaluation, the robotic datasets covered a
wide range of actuation settings and environmental conditions. Figure 6A
details the tested combinations of frequency–amplitude pairs and corre-
sponding flow speeds used for each dataset. These datasets were orga-
nized in a 6� 7 grid, with consistent indexing across the metric
heatmaps shown in Figure 6A. Rows 1 to 4 of the grid represent laminar
flow conditions trials, while rows 5 to 6 represent KVS flow condition trials.

Time-Series Modeling, Training, and Validation Workflow: To model the
mapping from muscle activity to body kinematics in a swimming fish, we
employed a linear ARX model (Figure 3A). The ARX framework offers sev-
eral advantages that align with our goals of biological interpretability and
robotic transfer. First, its structure explicitly captures time-domain rela-
tionships, making it well-suited for sequential motor behaviors.[22] This
contrasts with frequency-domain or purely statistical models, which
may obscure transient dynamics critical for swimming motion. Second,
ARX models are computationally efficient and interpretable: each coeffi-
cient reflects a clear temporal contribution of past inputs or outputs, allow-
ing direct physiological insights into muscle–motion coupling.[43]

Additionally, the model’s ability to incorporate fixed input–output delays
enables alignment with known neuromuscular latencies, thereby facilitat-
ing biologically meaningful parameters.[37] The ARX framework is also one
of the most extensively studied SySID methods, with demonstrated suc-
cess in underwater robotics applications, including heave dynamics
modeling,[44] yaw control optimization,[45] and dynamic modeling of
marine vehicles under hydrodynamic disturbances.[46] This prior use in
aquatic environments[44–49] means that ARX-estimated parameters such
as natural frequency, damping ratio, and delay have direct physical rele-
vance for aquatic vehicles, strengthening the credibility of transferring
fish-trained models to robotic platforms. Its stability, maturity, and modest
data requirements make it a reliable benchmark for evaluating more com-
plex or nonlinear alternatives. Importantly, its simplicity and linearity sup-
port cross-domain generalization, which is essential for transferring
models trained on biological data to robotic systems with similar kinemat-
ics but different actuation mechanisms. These features collectively make
the ARX model an ideal candidate for building a model of the system that
bridges biological and robotic domains.

The ARX model used in this study relates neuromuscular signals to
kinematic outputs. Generally speaking, an ARXmodel[36] leverages delayed
inputs and outputs to predict future output values over one or more sam-
ple intervals. The simplest form of the ARX model can be expressed as

ŷðtÞ ¼ f ðxðtÞÞ (2)

where ŷðtÞ corresponds to the model’s predicted output, while xðtÞ is a
regression vector comprising current and past inputs, outputs, and pre-
filtered noise. The function f ð⋅Þ defines the relationship between xðtÞ and
the prediction. For linear grey-box models, f ð⋅Þ takes the form of a ratio of
linear polynomials. A typical linear ARX model can be expressed as

ŷðtÞ þ yðtÞða1q�1 þ a2q�2 þ : : : þ ana q
�na Þ

¼ uðt� nkÞ½ðb1 þ b2q�1 þ : : : þ bnb q
�nbþ1Þ� þ eðtÞ

(3)

The model includes constant coefficients a1, a2, : : : , ana and
b1, b2, : : : , bnb , which need to be estimated. Here, ŷðtÞ denotes the
one-step-ahead prediction of the true output yðtÞ, and q�1 is the backward
shift (or delay) operator. The input signal is represented by uðtÞ, and eðtÞ
denotes the additive noise. The term nk specifies the number of delay
steps (at least one), while na and nb define the lengths of the output
and input regression vectors, respectively (with nb accounting for one
additional term).
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To apply the ARX framework to our problem, we constructed an inde-
pendent SISO ARX model for fish TD. As mentioned in the previous sec-
tion, the model was trained to map differential EMG input signals to TD,
using synchronized datasets collected during free swimming. Our objec-
tive was to identify a model that not only fit the training data well but also
generalized across different swimming trials and subjects.

An initial hyperparameter sweep was performed across multiple data-
sets to evaluate combinations of model orders na, nb, and delay nk . The
parameters of the linear ARX models were identified using a conventional
least-squares minimization approach, as described by.[43] We prioritized
configurations that achieved high fitness to the measured output
while maintaining model simplicity. A third-order model—denoted ARX
(3, 3, nk)—emerged as a strong candidate due to its balance of perfor-
mance and interpretability. This structure revealed two prominent poles
across datasets (see Figure S2B, Supporting Information), which enabled
further dynamic characterization of the system using second-order approx-
imations (e.g., natural frequency ωn and damping ratio ζ). The compact
form also facilitated the interpretation of gain and temporal alignment
between input and output signals.

The input–output delay nk was determined through empirical testing.
We systematically varied nk and evaluated model performance across
training and cross-dataset validation scenarios. The optimal delay was cho-
sen such that the ARX model trained on one fish trial generalized well to
other trials when provided with their EMG inputs, ensuring robustness
across individuals. Ultimately, the ARX (3330) configuration was selected.
This model consistently achieved high fit scores on both training data and
unseen validation datasets, as seen in Figure 3B–E.

After estimating the model parameters, a more in-depth examination of
the system’s poles and gain was carried out to extract additional insights
into its dynamics. Across trials, the fitted model exhibited two dominant
complex-conjugate poles, suggesting the presence of a second-order sen-
sorimotor mode in the fish body (see Figure S2, Supporting Information).
Using standard pole-to-parameter transformations, we approximated key
dynamic characteristics, including the natural frequency and damping
ratio, which provide insight into the resonant behavior and compliance
of the fish’s axial system. This dynamic characterization complements
the predictive function of the ARX model by offering interpretable metrics
linked to the underlying biophysics. As such, the trained ARX (3330) model
serves not only as a tool for mapping EMG to kinematics but also as a
compact, interpretable representation of the fish’s locomotor dynamics.

Once the model is trained on real-fish data, we evaluated its generaliz-
ability and practical utility by testing its ability to predict the kinematics of a
robotic fish using processed servo signal as input (Figure 3H). This cross-
domain deployment serves as a validation of the model’s capability to
transfer learned sensorimotor relationships from a biological system to
a synthetic platform with similar morphological and dynamical character-
istics. The robotic fish used in this study closely resembled the geometry
and joint configuration of the real fish, with actuated tail segments mim-
icking the degrees of freedom captured in the kinematic data. The ARX
(3330) model, trained solely on a single dataset of synchronized EMG
and TD from a real swimming fish, was used in inference mode to predict
robotic-fish TD from unseen PWM signals that drive the robotic-fish’s ser-
vomotors in open-loop mode. The TD data for the robotic fish was
obtained similarly to the real-fish data. Importantly, no robotic-fish data
were used for training the ARX (3,3,30) model, as it was trained solely
on biological EMG–TD pairs. For cross-domain testing, we ensured that
the robotic-fish input signal (processed PWM) was preprocessed in the
same way as the EMG, so the model would “see” an input in a familiar
format. This careful signal conditioning made it possible for the ARX to
interpret motor commands in the robotic fish as analogous to muscle acti-
vations in the real fish, enabling direct domain transfer without retraining.

It was observed during experimentation and verified by analysis
(see Figure 3) that this cross-domain application requires no further
retraining or tuning of the ARX model. Despite differences in material
properties, actuation delays, and environmental interactions, the predicted
TD trajectories elicited fluid and coordinated swimming motions in the
robotic fish that qualitatively resembled those of the biological system.
This result demonstrates that the ARX model successfully captured core

sensorimotor dynamics transformations that are robust enough to be
ported across domains. Furthermore, this evaluation highlights the value
of compact, interpretable gray-box models in bioinspired robotics. The
ability to map EMG-like actuation patterns into joint-level kinematics using
a biologically informed SySID model offers a promising foundation for
closed-loop control architectures and embodied neural interfacing in
future soft robotic platforms.
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